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Abstract

An enhanced analytical model is presented based on an extension of previous models for constrained layer damping

(CLD) in beam-like structures. Most existing CLD models are based on the assumption that shear deformation in the core

layer is the only source of damping in the structure. However, previous research has shown that other types of deformation

in the core layer, such as deformations from longitudinal extension and transverse compression, can also be important. In

the enhanced analytical model developed here, shear, extension, and compression deformations are all included. This

model can be used to predict the natural frequencies and modal loss factors. The numerical study shows that compared to

other models, this enhanced model is accurate in predicting the dynamic characteristics. As a result, the model can be

accepted as a general computation model. With all three types of damping included and the formulation used here, it is

possible to study the impact of the structure’s geometry and boundary conditions on the relative contribution of each type

of damping. To that end, the relative contributions in the frequency domain for a few sample cases are presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Constrained layer damping (CLD) is an effective passive vibration control approach that is often used on
beam-like structures. The deformation of the damping layer (core layer) results from the relative movement of
the two face layers, with the result of a damped dynamic response. With a wide range of materials available for
use as a core layer, structures with relatively large dynamic loss factors can be designed.

Numerous research has been conducted on CLD in beam structures with the vast majority of that work
based on the assumption that there is only shear deformation (pure shear) in the core layer. Ross, Ungar and
Kerwin (RKU) used a series of equations to formulate the relationship between the motions of the three layers
and the structure loss factor for these sandwich beams [1]. Their work assumed that shear deformation in the
core layer and the hysteretic behavior of that material in shear is the main source of damping. An effective
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. RKU model displacements for a CLD sandwich beam.
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bending stiffness, which is complex due to damping in the core layer, was proposed to be used together with
the regular Euler beam model. Later, Mead and Markus [2] proposed a sixth-order differential equation for
sandwich beams that can be used for arbitrary boundary conditions. That work was an extension of the RKU
model. Both the RKU model and the model developed in Ref. [2] have two common assumptions: (1) the two
face layers are treated as Euler beams, and (2) the core layer only experiences shear deformation. The motions
associated with these assumptions are illustrated in Fig. 1. For the purposes of this discussion, the two face
layers are called the constraining layer and the base layer, while the middle layer is called the core layer. The
layers are also denoted by numbers 1, 2 and 3, respectively, throughout this work. The two longitudinal
displacements u1 and u3 are for the two face layers and w is the transverse displacement, which is the same for
all three layers. Shear deformation in the core layer is found from the relative motion between u1 and u3. The
assumptions described above are widely used.

In some structures, the above assumptions may not always be valid. Rao [3] studied the problem with the
same transverse displacement assumption as that in Ref. [1] with the addition that longitudinal displacement
varies linearly across the thickness of each layer. Of course, the displacement is continuous across the layer
connections. In that work, all three layers are treated as Timoshenko beams instead of the Euler beams used in
the RKU model. Rao proposed a system of equations to predict loss factors and natural frequencies of
sandwich beams with simply supported boundary conditions. The additional assumptions used in Ref. [3] will
be discussed in detail later in this work. The numerical study of Ref. [3] showed that the assumptions in the
RKU model that the core layer only experience shear deformation is not accurate in some cases, especially
when the core layer is comparatively thick. The analytical models of Refs. [1,3] have one point in common in
that all three layers have the same displacement in the transverse direction.

Douglas and Yang [4,5] examined the effect of compressional deformation in the core layer due to the
relative transverse displacements of the two face layers. They concluded that damping from the transverse
compression deformation of the core layer can be dominant in some cases. Based on this result, Sisemore and
Darvennes [6] proposed an eighth-order differential equation in terms of the base layer transverse motion.
This equation was developed under the assumption that the two face layers only compress the core layer. No
other deformations, such as shear, exist in the core layer. In that work, experimental results were compared
with the results from the newly developed equation. It was shown that the model can predict the natural
frequencies well. Unfortunately, prediction of the loss factors was not as accurate. This limitation in accuracy
is not unexpected since damping from shear deformation, which was completely neglected in that analysis, can
often be important. As a result, if only compression deformation is taken into account, loss factors may not be
predicted accurately. Sylwan [7] considered the shear and compression damping simultaneously. In that work
the core layer was assumed to experience both shear and compressional strain. A set of equations were
developed and an iterative scheme used to solve equations to obtain the flexural vibration wavenumbers and
loss factors.

When considering the three models that have been mentioned thus far, which hereafter will be referred to as
the RKU, RAO, and Sisemore models, respectively, an important question arises: Would the accuracy of loss
factor predictions be enhanced if deformations from shear, longitudinal extension, as well as transverse
compression were simultaneously included in the model? In the work presented here, an enhanced model is
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developed, in which all three of these deformations are taken into account. The advantage of this new
formulation is shown by comparing the performance to the Rao model for a range of core layer thickness and
stiffness.

One of the unique advantages of this new approach lies in its formulation. Because individual strain energies
are used, it becomes possible to track these energies throughout the formulation. As a result, it is now possible
to examine the relative contributions of each type of motion to the overall structural damping. A few examples
are presented to demonstrate this new capability. With this new tool, designers can now gain more insight into
most important design parameters and their impact on vibration reduction performance.
2. Analytical model and application

Prior to introducing the enhanced model, the Rao and Sisemore models need to be reviewed as these models
provide a basis for the enhanced model. As noted above, the Rao model [3] was developed under the following
assumptions:
(1)
 The transverse displacements of all three layers are equal.

(2)
 The longitudinal displacement is linearly distributed across the thickness of each layer.

(3)
 There is no slip between the layers.
The displacement coordinates for the models based on these assumptions are illustrated in Fig. 2.
Rao used Hamilton’s principle to obtain the equations of motion for the sandwich beam. The permitted

displacements shown in Fig. 2 were set as generalized coordinates for strain energy and kinetic energy in the
beam. All these displacements were treated as harmonic functions that were selected based on the geometric
boundary conditions. Substituting these harmonic functions into the equations of motion, the differential
equations are converted into algebra equations that are much easier to solve. This same approach will also be
used later in this work to obtain an enhanced model.

The assumptions used in the Sisemore model are much different than those used for the Rao model.
Sisemore assumed the two face layers are Euler beams and the damping layer is treated as distributed parallel
springs, each with complex stiffness, as illustrated in Fig. 3. Due to the different transverse displacements, the
two face layers compress or stretch the damped springs, which provide dynamic damping. Although results
showed the Sisemore model is poor at predicting loss factors, the effect of compression in the damping layer
can still be an important part of the response. On the other hand, the Rao model lacks the effect of transverse
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Fig. 2. Rao model displacements for a CLD sandwich beam.
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Fig. 3. Sisemore model beam displacements for a CLD sandwich beam.
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compression on the core layer. Consequently, the following work will combine these effects to obtain an
enhanced model.

The enhanced model can be set up with the following assumptions, with the associated coordinates
illustrated in Fig. 4:
(1)
 The transverse displacements of the two face layers are different.

(2)
 The longitudinal displacement varies linearly across the thickness of each layer.

(3)
 There is no slip between connected layers.
The first assumption means that the compression deformation of the core layer resulting from relative
transverse displacements of the two face layers is included. The second assumption is the same as that of the
Rao model in that the effects of both the shear and extension deformations brought by longitudinal
displacements of the layers are considered.

With the above assumptions, the strain energy relation can be derived. The kinetic energy can also be
obtained in terms of the first-order time derivative of the displacements. As mentioned earlier, the approach in
Ref. [3] will be used here, but Lagrange’s equation will be used instead of Hamilton’s principle.

Based on the assumptions noted above, the displacement vector for the enhanced sandwich beam model is
given by

umo ¼ ½w1 w3 u1 u2 u3 u4 �
T, (1)

where wi is the transverse displacement for the ith layer. As illustrated in Fig. 4, u1, u2 and u3 are the
longitudinal displacement for the top surface of layers 1, 2 and 3, respectively, and u4 is the longitudinal
displacement for the bottom surface of the base layer. Because the core layer is compressed by the two outer
layers, it follows that

w2 ¼
w1 � w3

H2
zþ w3,

where H2 is the thickness of the core layer and z is the coordinate in the transverse direction.
All displacements are treated as harmonic functions, which are selected based on the boundary conditions.

The following discussion is for a sandwich beam simply supported at both ends. For other boundary
conditions the process is the same and only the basis functions need to be modified. For the simply supported
sandwich beam, the transverse and longitudinal displacements will be expressed as follows [3]:

wimðxÞ ¼
X1
m¼1

W im sin
mpx

L

� �
; i ¼ 1; 3 (2)

and

ujmðxÞ ¼
X1
m¼1

Ujm cos
mpx

L

� �
; j ¼ 1; 2; 3; 4, (3)

where m is the order of the basis function, W and U are the initially unknown weighting coefficients, x is the
location along the beam, and L is the length of the beam.
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The kinetic energy for the ith layer is

Ti ¼
1

2
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dx, (4)

where t is the time. Note that here and elsewhere the assumed harmonic time dependence is not shown to
reduce complexity in the relations. The stain energy for the ith layer is

V i ¼
1

6

Z L
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 !
dx, (5)

where rI, Ai, Ei, Gi and Hi are the ith layer’s density, cross-sectional area, Young’s modulus, shear modulus,
and thickness, respectively. The width of the beam is b.

Substituting the displacement series into Eqs. (4) and (5), Lagrange’s equation can then be used to derive the
equations of motion. In using this approach, the resulting equations can be found as

ðK� o2MÞumo ¼ 0, (6)

where M and K are mass matrix and stiffness matrix, respectively, for the entire structure.
For the simply supported sandwich beam discussed here, the mass matrix is

M ¼

r1A1 þ
r2A2

3

r2A2

6
0 0 0 0

r2A2

6
r3A3 þ

r2A2

3
0 0 0 0

0 0 r1a1 r1t1 0 0

0 0 r1t1 r1a1 þ r2a2 r2t2 0

0 0 0 r2t2 r2a2 þ r3a3 r3t3
0 0 0 0 r3t3 r3a3

2
6666666666664

3
7777777777775

(7)

and the stiffness matrix is

K ¼

G2A2

3
þ G3A3

� �
X 2 þ n

G2A2X
2

6
� n �bG1X

�bG2

2
X þ bG1X

bG2X

2
0

G2A2X
2

6
� n

G2A2

3
þ G3A3

� �
X 2 þ n 0

�bG2X

2
b

G2

2
� G3

� �
X bG3X

�bG1X 0 G1d1 þ E1a1X 2 E1t1X
2 � G1d1 0 0

�bG2

2
X þ bG1X

�bG2X

2
E1t1X 2 � G1d1 G1d1 þ G2d2 þ ðE1a1 þ E2a2ÞX

2 E1t1X 2 � G1d1 � G2d2 0

bG2X

2
b

G2

2
� G3

� �
X 0 E1t1X

2 � G1d1 � G2d2 G2d2 þ G3d3 þ ðE2a2 þ E3a3ÞX
2 E3t3X 2 � G3d3

0 bG3X 0 0 E3t3X 2 � G3d3 G3d3 þ E3a3X
2

2
666666666666666666664

3
777777777777777777775

(8)

For the geometric variables: ai ¼ Ai=3, di ¼ b=Hi, ti ¼ Ai=6. Furthermore, X ¼ pm=L and n ¼ E2b=H2,
where L is the length of the beam. Note that for the problems considered here, both the length and width
values are the same for all the layers. That is, only full coverage of the damping treatment is considered.

The K and M presented above are similar to those given in Ref. [3] with the addition of one degree of
freedom, which results from different transverse displacements of the two face layers. K is complex because the
core layer has a complex Young’s modulus and shear modulus. The problem can be converted to an
eigenvalue problem:

K� o2M ¼ 0 (9)
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The eigenvalues o2
i ¼ o2

i ð1þ ZiÞ are complex, where oi is the ith natural frequency and Zi is the ith modal
loss factor.

Clearly, the difference between the enhanced model and the previous Rao model is that transverse
displacements of the face layers can be different in the enhanced model. It is important to understand how this
difference affects the accuracy of prediction. It is therefore natural to examine how the thickness and the
stiffness of the core layer impact predictions for these two models. In Ref. [3], Rao compared other models
with his model and showed better performance with variations in thickness and stiffness of the core layer and
the constraining layer. In a similar manner, the following section will discuss the prediction of natural
frequencies and loss factors using both the Rao model and the enhanced model for different core layer
thickness and stiffness.
3. Numerical cases for analytical models

Before using the enhanced model, this modeling approach should be validated. In results provided by
Rikards [8], a 0.27-m-long sandwich beam simply supported on both ends is considered. Five different
configurations were studied and further details about each configuration can be found in Ref. [8]. That work
showed a good match between the results with Rikards’ element and three previous results for beams. Rikards’
plate model in that same work was verified with previous experimental results. Consequently, Rikards results
can be taken as accurate and used for validating the analytical model in the present work. Table 1 shows a
comparison between Rikards’s analytical results and the enhanced analytical model used in this work under
the same five simply supported configurations. It can be seen that in all cases the new model matches previous
results well. Unfortunately, it is not possible to validate the present model with the experimental results
provided by Sisemore and Darvennes [6] due to a lack of material properties provided in that work.
Furthermore, the boundary conditions considered in that work differ from those considered here. In another
work, Xie and Shepard Jr. [9] developed a finite element model that corresponds with the enhanced model
developed here. That work provided a comparison of this new finite element model with previous experimental
results presented in the work of Leibowitz and Lifshitz [10] for several configurations. For the first mode, the
new finite element model differed from the first experimental natural frequency by less than 5% and from the
first experimental loss factor by less than 13%, with some cases having errors less than 5%. A comparison
Table 1

Comparison between results of enhanced model and Ref. [8]

Case Mode Loss factor Frequency (rad/s)

Rikards analytical

results [8]

Current

model

% Diff. Rikards analytical

results [8]

Current

model

% Diff.

1 1 0.50 0.50 0 878 927 5.6

1 2 0.34 0.34 0 2458 2522 2.6

1 3 0.20 0.20 0 4927 4964 0.8

2 1 0.20 0.19 5.0 1538 1550 0.8

2 2 0.43 0.43 0 4549 4736 4.1

2 3 0.50 0.49 4.0 7929 8354 5.4

3 1 0.11 0.11 0 1643 1645 0.1

3 2 0.31 0.31 0 5456 5568 2.1

3 3 0.45 0.44 2.0 9877 10,300 4.3

4 1 0.32 0.32 0 1106 1132 2.4

4 2 0.20 0.21 5.0 3481 3508 0.8

4 3 0.11 0.11 0 7300 7292 0.1

5 1 0.10 0.10 0 1581 1582 0.1

5 2 0.26 0.26 0 5357 5422 1.2

5 3 0.32 0.32 0 10,187 10,372 1.8
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between this new finite element model and the analytical model provided here was then conducted for the
present work. The first two natural frequencies for the two modeling approaches differ by at most 0.4%, as
shown in Table 2. The first two loss factors differ by at most 0.6%. Because a publication related to Ref. [9] is
pending, a detailed validation is not possible until that work becomes available. Based on these comparisons
with other approaches, though, it appears that the performance of the current enhanced model is acceptable
and can be used in future research.

A comparison between the enhanced model and the Rao model will be made for variations in both the core
layer thickness and stiffness for a simply supported beam. For these comparisons, the thickness and stiffness
for each of the two face layers will remain constant. In this case, the sandwich beam consists of two aluminum
face layers, which are each 0.3m long, 0.012m wide and 0.001m thick. The core layer has the same parameters
except for thickness and stiffness, which will be given later. Although the loss factor for viscoelastic materials
in general is frequency dependent, it is assumed here to have a constant value of 1 for convenience. Note that
this will not be an issue in future use of this method since the emphasis here is to note the difference between
the two approaches.

Table 3 shows the comparison for natural frequency and loss factor for the two models with variations of
the thickness ratio h, which is defined as the ratio between the core layer thickness and face layers’ thickness.
In the table, where h varies from 0.05 to 5, the predictions of frequencies and loss factors of the first two modes
from the enhanced model and the Rao model are the same.

Table 4 shows the comparison between the two models with variations in the thickness ratio k, which is
defined as ratio between Young’s modulus for the core layer and Young’s modulus of the face layers. As k

varies from 10�2 to 1, the predictions from two models are still the same.
Table 2

Comparison between the enhanced analytical model and FEA in Ref. [9] for the first two natural frequencies

Thickness (mm) First mode Second mode

Constraining

layer

Core

layer

Base

layer

Enhanced

model

FEA [9] Difference

(%)

Enhanced

model

FEA [9] Difference

(%)

2 2 2 on 31.8 31.9 0.3 100.5 100.9 0.4

Z 0.380 0.380 0 0.169 0.168 0.6

2 3 2 on 31.5 31.5 0 98.2 98.6 0.4

Z 0.414 0.414 0 0.178 0.177 0.6

2 2 1 on 26.8 26.9 0.4 73.3 73.6 0.4

Z 0.532 0.532 0 0.318 0.316 0.6

2 1 2 on 33.1 33.2 0.3 104.6 105.1 0.5

Z 0.338 0.338 0 0.176 0.175 0.6

Note: 300mm length with steel face layers.

Table 3

Comparison between the enhanced model and the Rao model with different core layer thicknesses

h Frequency (rad/s) Loss factor

Rao model Enhanced model Rao model Enhanced model

0.05 Mode 1 327 327 0.003 0.003

0.05 Mode 2 1303 1303 0.011 0.011

0.5 Mode 1 392 392 0.030 0.030

0.5 Mode 2 1496 1496 0.108 0.108

5 Mode 1 752 752 0.263 0.263

5 Mode 2 2127 2127 0.575 0.575



ARTICLE IN PRESS

Table 4

Comparison between the enhanced model and the Rao model with different core layer stiffnesses

k Frequency (rad/s) Loss factor

Rao model Enhanced model Rao model Enhanced model

0.01 Mode 1 469 469 0.007 0.007

0.01 Mode 2 1857 1857 0.026 0.026

0.1 Mode 1 471 471 0.005 0.005

0.1 Mode 2 1883 1883 0.007 0.007

1 Mode 1 479 479 0.037 0.037

1 Mode 2 1918 1918 0.037 0.037

Z. Xie, W.S. Shepard Jr. / Journal of Sound and Vibration 319 (2009) 1271–12841278
The above discussion illustrates that changing the thickness and stiffness of the core layer will not lead to an
apparent difference between the enhanced model and Rao model in the predictions of natural frequencies and
loss factors. These identical results can be explained by the fact that shear damping is dominant at the
resonant frequencies, and shear damping is included in both models. The importance of the shear damping at
these frequencies was also noted in Ref. [6], where it shows that the loss factors calculated from the
compression-damping-only model are much smaller than the experimental results. In spite of the dominance
of shear damping here, it will be shown below that the compression damping can be dominant in some off-
resonant frequency ranges. Regions where this damping cannot be neglected will also be discussed. As
mentioned in the previous section of this work, Rao [3] provided some good comparisons between his model
and other models. His discussion can be an addition to the comparison in this work to provide a general
guidance for the CLD problem.

In the numerical case presented here, it can be seen that compression damping cannot always be neglected.
As a result, it is beneficial to investigate the relative contribution of each type of damping. If distributions of
each type of damping in a structure are understood, then design engineers can be able to more quickly examine
different designs. Because the enhanced analytical model takes all three types of damping into account, it is
possible to use the formulation to calculate these relative damping contributions. In the following section the
enhanced model is used to calculate the percentages of each type of damping in the total damping.

4. Relative damping contribution formulation

The enhanced model was derived above using the Lagrange equation. In that derivation, the strain energy in
all three layers was calculated in Eq. (5). Because the core layer has complex shear and Young’s modulus, the
strain energy in the core layer is complex and the imaginary component is the energy dissipated by the
respective damping. It can be seen that Eq. (5) has three parts including strain energy for extension, shear and
compression. All of these are in terms of the six degrees of freedom given in Eq. (1). When the responses of
these six degrees of freedom are known, they can be used to calculate the different strain energies in the core
layer. In order to calculate the response, Eq. (6) can be changed to

ðK� o2MÞumo ¼ f. (10)

With the displacements in Eqs. (2) and (3), a mode superposition method can be used in Eq. (10) to derive the
response at each mode and those summed to obtain the total response. The force used in this study is a unit
impulse force applied on the point one-seventh of the length from one end of the beam. Note that in this way
the response is in terms of frequency. As a result, the damping distribution will be studied in the frequency
domain.

The relative percentage of each type of damping in the total damping is used to illustrate the importance of
each damping. The relative percentage of damping can be calculated as

Px ¼
Ex

Ec þ Ee þ Es

� 100% (11)
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where Px is the relative percentage, Ee, Ec and Es are the energy dissipated by extension damping, compression
damping and shear damping, respectively. Ex is the energy for the component associated with the percentage
of interest. For example, Ps is the percentage of damping associated only with shear.

After the responses are calculated, Eq. (5) is used to calculate the three different components of strain
energy. Because the loss factors of shear and Young’s modulus are assumed the same and constant, the
relative percentages of these three components of strain energy in the total strain energy of the core layer
should be the same as the relative percentages of three types of damping in the total damping. The frequency
distributions of all three types damping can therefore be found.
5. Relative damping contribution results

If various structure parameters are changed, different distributions of damping may result. Therefore, a
parameter study of the relative damping contributions can give some insights regarding the impact of different
structural parameters. Because the enhanced model in this work is based on the CLD beam structure, the
parameters selected here are beam’s length, the core layer thickness, and the two face layers’ thicknesses. Note
that other parameters, like boundary conditions, could be selected. However, the purpose of this study is only
to demonstrate the effectiveness of a new approach. Also the relative damping contribution in other CLD
structures such as plates can be studied in the same manner once a suitable analytical plate model which
includes all three types of damping is available.

As stated earlier, the beam’s length, the core layer thickness and two face layers’ thicknesses are selected to
study their impact on damping distributions. In the study of each individual parameter the other two
parameters are kept constant. All parameters for study of varying beam length, core layer thickness, and the
two face layers’ thickness are listed in Table 5. The first case is the impact of varying beam length. The beam’s
length is changed from 200 to 500mm and other parameters are listed in Table 5. Figs. 5–8 show the impact of
different beam lengths on the relative contributions of each type of damping. It can be seen that with longer
lengths, shear damping tends to contribute more to the total damping in the low-frequency grange. When
frequency is higher than 200Hz, the compression damping gradually becomes more important and shear
damping becomes less important. Note that those frequencies where shear damping reaches a peak are the
resonant frequencies of beam’s transverse vibration. For extension damping, it can be neglected in most cases
for this configuration.

The second case studies the impact of the core layer thickness. The core layer thickness is changed from 2 to
5mm and other parameters are listed back in Table 5. Figs. 9–12 show the impacts of different core layer
thicknesses. It can be seen that damping distributions do not depend much on the core layer thickness. As for
the case of the beam length, the compression damping gradually becomes more important and shear damping
becomes less important at higher frequency.
Table 5

Parameters used in the three studies on effects of beam length, core layer thickness and two face layers’ thicknesses

Parameters Study Face layers Core layer

Thickness (mm) Beam length 3 3

Core layer thickness 3 Variable

Two face layers’ thicknesses Variable 3

Length (mm) Beam length Variable Variable

Core layer thicknesses 300 300

Two face layers’ thickness 300 300

Width (mm) All 10 10

Density (kg/m3) All 2040 1200

Young’s modulus (Pa) All 45.54E9 0.57E6 (1+i)

Shear modulus (Pa) All 17E9 0.19E6 (1+i)
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Fig. 5. Damping distribution when beam length is 200mm (—— extension damping; – . – . compression damping; – – – – shear damping).

Fig. 6. Damping distribution when beam length is 300mm (—— extension damping; – . – . compression damping; – – – – shear damping).

Fig. 7. Damping distribution when beam length is 400mm (—— extension damping; – . – . compression damping; – – – – shear damping).
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Fig. 8. Damping distribution when beam length is 500mm (—— extension damping; – . – . compression damping; – – – – shear damping).

Fig. 9. Damping distribution when the core layer thickness is 2mm (—— extension damping; – . – . compression damping; – – – – shear

damping).

Fig. 10. Damping distribution when the core layer thickness is 3mm (—— extension damping; – . – . compression damping; – – – – shear

damping).
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Fig. 11. Damping distribution when the core layer thickness is 4mm (—— extension damping; – . – . compression damping; – – – – shear

damping).

Fig. 12. Damping distribution when the core layer thickness is 5mm (—— extension damping; – . – . compression damping; – – – – shear

damping).

Fig. 13. Damping distribution when two face layers are each 2mm thick (—— extension damping; – . – . compression damping; – – – –

shear damping).
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Fig. 14. Damping distribution when two face layers are each 3mm thick (—— extension damping; – . – . compression damping; – – – –

shear damping).

Fig. 15. Damping distribution when two face layers are each 4mm thick (—— extension damping; – . – . compression damping; – – – –

shear damping).
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The last case examines the impact of the two face layer thicknesses. Two face layer thicknesses are kept
equal and changed from 2 to 5mm. Other parameters are listed back in Table 5. Figs. 13–16 show the impacts
of different face layer thicknesses. It can be seen that the face layers’ thicknesses have a great impact on the
relative contributions of shear and compression damping, thicker face layers lead to higher contribution of
compression damping in the low-frequency range. This is because increases to the face layers’ thickness will
increase the participation of the compression mode.
6. Conclusion

This work provided the development of an enhanced analytical model for studying structures with CLD.
This enhanced model included shear, compression, and extensional damping in the core layer. The numerical
examples showed that the enhanced model matches the Rao model when predicting natural frequencies and
loss factors. A parameter study on the relative contributions of all three types of damping was conducted using
the enhanced model. The parameter study showed that in some cases, particularly at off-resonance conditions,
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Fig. 16. Damping distribution when two face layers are each 5mm thick (—— extension damping; – . – . compression damping; – – – –

shear damping).
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the impact of compression damping can be significant. From the parameter study it was also shown that
extension damping usually has little contribution through the whole frequency range and can be neglected in
most cases. At the same time longer beam length and lower face layer thicknesses result in a lower relative
contribution of compression damping to the total damping, while the core layer thickness has little impact on
the damping distributions for the cases studied. These results are not surprising. Based on the study of this
work and the work in Ref. [3], a general guidance for the selection of analytical computation models is
available for CLD problems.
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